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Fluorescence microscopy is one of the most powerful tools for elucidating the
cellular functions of proteins and other molecules. In many cases, the function of
a molecule can be inferred from its association with specific intracellular compart-
ments or molecular complexes, which is typically determined by comparing the
distribution of a fluorescently labeled version of the molecule with that of a second,
complementarily labeled probe. Although arguably the most common application
of fluorescence microscopy in biomedical research, studies evaluating the “colo-
calization” of two probes are seldom quantified, despite a diversity of image
analysis tools that have been specifically developed for that purpose. Here we
provide a guide to analyzing colocalization in cell biology studies, emphasizing
practical application of quantitative tools that are now widely available in com-
mercial and free image analysis software.

digital image analysis; fluorescence microscopy; confocal microscopy

FUELED BY DEVELOPMENTS in molecular biology, electronics, and
chemistry, fluorescence microscopy has flourished in the past
30 years. One of the most common applications of fluorescence
microscopy is to compare the subcellular distributions of two
fluorescently labeled molecules. Such comparisons can be used
to understand the function of a protein, as when the protein is
found to colocalize with a marker of a particular organelle, or
to understand intracellular transport, as when the protein is
found to colocalize with a marker of a particular pathway.
However, the data collected in these studies are seldom rigor-
ously evaluated. Rather, cell biologists frequently treat colo-
calization as a subjective feature, using something like Potter
Stewart’s criterion for defining obscenity “I know it when I see
it.” This practice persists despite a relatively large literature in
methods of quantitative colocalization analysis.

Given the number of excellent reviews that have been
published on the topic of colocalization analysis (7, 38, 50) and
the absence of much that is fundamentally new for the past 20
years, a reader could justifiably wonder about the need for
yet another review. (In fact, the reduced appetite for articles
on the topic of colocalization is quantifiable; a literature
search shows that while the number of biomedical review
articles including the term “fluorescence microscopy” has
increased exponentially since 1980, the number including
the term “colocalization” started saturating at the turn of the
millennium.) This article is predicated upon the prolifera-
tion of software tools for analyzing colocalization that have
been implemented in image analysis software packages
available to cell biologists (see partial listing in APPENDIX).
While it is laudable that these tools are now widely available to

biomedical researchers, they are frequently only vaguely de-
scribed. The goal of this article is to provide cell biologists
with some guidance on how to select the most appropriate
method for evaluating colocalization in their research and an
appreciation of the factors that need to be considered for
meaningful interpretation of colocalization studies. By using
examples from our own research, this guide also emphasizes
practical aspects of colocalization analysis that are seldom
represented in the simulated data typically used to characterize
colocalization methods.

For the purposes of this guide, we will assume that the
investigator has conducted image collection appropriately for
colocalization analysis so that the distribution of signal in each
image is a reliable representation of the distribution of each
probe in the sample. Thus the signal in each image is sufficient
to distinguish from noise and background, uncontaminated by
autofluorescence arising from the sample itself, and free of
signal bleed-through between the two images. That said, noise
is an inevitable feature of fluorescence microscopy, and image
quality is necessarily limited for many interesting studies.
Investigators should not be intimidated by methods that “re-
quire” high-quality images. Excellent descriptions of the var-
ious aspects of proper image collection are presented in Refs.
7, 38, 43, and 50.

What Do You Mean By Colocalization?

We will focus on how the analysis of the distribution of
signals in fluorescence microscopy images can be used to
determine whether two probes codistribute with one another.
This approach is not appropriate for detecting molecular inter-
actions; the resolution of the light microscope, even a “super-
resolution” system, is simply insufficient to identify the phys-
ical apposition of two molecules through a comparison of their
distributions in fluorescence images. Such studies require
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higher resolution techniques such as fluorescence resonance
energy transfer or electron microscopy. Fluorescence colocal-
ization analysis is more appropriately used to determine
whether two molecules associate with the same structures; for
example, to determine whether a particular protein associates
with endosomes (4, 25, 26, 36, 42, 46, 49), mitochondria (31),
or microtubules (6, 37) or whether two proteins associate with
the same subnuclear structures (19, 33, 45) or with the same
plasma membrane domains (27, 39). Evaluating colocalization
at this scale is still susceptible to the limits of resolution; an
overlap in fluorescence does not necessarily indicate colocal-
ization of two probes in the same cellular structure. However,
the observation of repeated coincidence of two probes in
multiple structures throughout a cell increases the confidence
that the two occupy the same structures. As described below,
the codistribution of two probes in fluorescence microscope
images may be evaluated visually, quantitatively, and statisti-
cally.

Colocalization can be thought of as consisting of two com-
ponents: co-occurrence, the simple spatial overlap of two
probes, and correlation, in which two probes not only overlap
with one another but codistribute in proportion to one another
within and between structures. In some cases, the distribution
of two probes might be expected to overlap but not propor-
tionally. For example, the fluorescently labeled cargo of an
endosome would be expected to co-occur in the same vesicles
labeled with a green fluorescent protein (GFP) chimera of an
endocytic Rab protein, but there is no necessary reason that the
amount of cargo should scale with the amount of the Rab
protein. In other cases, the two probes might be expected to
codistribute proportionally with one another so that the fluo-
rescence levels of probes labeling each would be spatially

correlated. An example of this would be two molecules that
interact with the same molecular complexes. Throughout this
guide, we will emphasize how the various methods used to
measure colocalization differ in their sensitivity to these two
components, and how this factor should be considered in
choosing a colocalization metric.

Visual Methods For Evaluating Colocalization

Colocalization of two probes may be subjectively identified
by the appearance of structures whose color reflects the com-
bined contribution of both probes when the images of each
probe are superimposed (or “merged”). So, for example, colo-
calization of fluorescein and rhodamine can be apparent in
structures that appear yellow, because of the combined contri-
butions of green and red fluorescence, respectively. Figure 1A
shows a projected image volume of Madin Darby Canine
Kidney (MDCK) cells incubated in a combination of Texas
Red-labeled transferrin and Alexa 488-labeled transferrin.
Since both probes are internalized via the same transferrin
receptors, they would be expected to codistribute in endo-
somes following internalization, as is apparent in the con-
stant yellow color of endosomes. In contrast, internalized
Texas Red-dextran and Alexa 488-transferrin distribute to
two distinct compartments, which appear red and green,
respectively, in Fig. 1E.

Superposition of fluorescence images is certainly the most
prevalent method for evaluating colocalization, and tools for
displaying multiple-channel fluorescence images as merged
color images are implemented in all biological image analysis
software. However, results can be ambiguous. The problem is
that an intermediate color, indicating colocalization, is ob-

Fig. 1. Colocalization analysis of endocytic probes. A: maximum projection of an image volume of Madin Darby Canine Kidney (MDCK) cells following
incubation with transferrin conjugated to Texas Red (B) and Alexa 488 (C) Arrows indicate endosomes containing both probes. D: scatterplot of red and green
pixel intensities of the two cells shown in A. E: maximum projection of an image volume of MDCK cells following incubation in Texas Red-dextran (F) and
Alexa 488-transferrin (G). Arrows indicate examples of lysosomes containing Texas Red-dextran. H: scatterplot of red and green pixel intensities of the image
shown in E.
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tained only if the intensities of the two probes are similar. The
insets in Fig. 1A show how small changes in the relative
intensity of two probes can completely alter the combined
color of the endosomes and thus the perception of probe
colocalization. For this reason, the overall degree of colocal-
ization throughout a sample may be visually apparent only
under very specific labeling conditions, when the fluorescence
of the two probes occurs in a fixed and nearly equal proportion.
In general, the most reliable method for visually comparing the
relative distribution of two probes is a side-by-side comparison
of the two images, with arrows provided as landmarks (com-
pare the colocalization of the probes in Fig. 1, B and C, with
that in Fig. 1, F and G).

The results of fluorescence colocalization studies can also be
represented graphically in scatterplots where the intensity of
one color is plotted against the intensity of the second color for
each pixel, similar to the output provided for flow cytometry
data. Under the conditions of proportional codistribution, such
as in the data shown in Fig. 1A, the points of the scatterplot
cluster around a straight line, whose slope reflects the ratio of
the fluorescence of the two probes (Fig. 1D). In contrast, the
lack of colocalization of dextran and transferrin in the image
shown in Fig. 1E is reflected by the distribution of points into
two separate groups, each showing varying signal levels of one
probe with little or no signal from the other probe (Fig. 1H).
The ability to produce and export scatterplots is common to
nearly all biological image analysis software packages.

Scatterplots can provide additional insights into colocaliza-
tion studies. First, they can be used to identify populations of
distinct compartments. Our laboratory has used scatterplots to
identify two populations of endosomes in MDCK epithelial
cells, one at the apex that is enriched in internalized IgA and
lacking internalized transferrin, and the other in lower portions
of the cell that contains both IgA and transferrin (Fig. 2A) (9,
46). These two compartments are readily distinguished in
scatterplots in which two different linear relationships are
obtained, with the slopes reflecting the distinctive ratios of
internalized IgA and transferrin in each type of compartment
(Fig. 2B). The scatterplot obtained from images of cells treated
with brefeldinA was used to support the observation that
brefeldinA induced a fusion of these different compartments,
resulting in a population of endosomes with a single, interme-
diate ratio of IgA to transferrin (Fig. 2C).

The visual techniques described above are useful for explor-
ing the relative distribution of different molecules in cells.
Superposition of images is useful for providing a spatial sense
of colocalization, identifying regions of the cell or compart-
ments where molecules colocalize. Scatterplots are useful for
detecting the presence of different populations of compart-
ments. They also provide a qualitative indication of the degree
of colocalization. However, these representations are generally
not helpful for comparing the degree of colocalization in
different experimental conditions nor for determining whether
the amount of colocalization exceeds random coincidence. In
the next sections we will describe several approaches that can
be used to quantify colocalization. These methods are simple to
employ and have been implemented in a variety of image
processing software packages. However, there are numerous
subtleties and assumptions in each that must be understood
before they can be productively applied to biological images.

Quantifying Colocalization

Pearson’s correlation coefficient. The discussion of scatter-
plots above suggests the use of Pearson’s correlation coeffi-
cient (PCC) as a statistic for quantifying colocalization. The
formula for PCC is given below for a typical image consisting
of red and green channels.

PCC �
� i�Ri � R�� � �Gi � G��

�� i�Ri � R��2
� � i�Gi � G��2

where Ri and Gi refer to the intensity values of the red and
green channels, respectively, of pixel i, and R

�
and G

�
refer to the

mean intensities of the red and green channels, respectively,
across the entire image. PCC values range from 1 for two
images whose fluorescence intensities are perfectly, linearly
related, to �1 for two images whose fluorescence intensities
are perfectly, but inversely, related to one another. Values near
zero reflect distributions of probes that are uncorrelated with
one another. So, for example, PCC measures 0.944 in the
image of two different colors of transferrin internalized into the
top cell shown in Fig. 1A, whereas PCC measures only �0.045
for the image of internalized transferrin and dextran in the top
cell in Fig. 1E. The square of PCC (generally denoted as R2) is
also known as the “coefficient of determination,” a statistic that
estimates the fraction of variability in G that can be explained
by its linear regression with R. Thus, for the two colors of
transferrin, 89% of the variability of Alexa 488-transferrin
fluorescence can be explained by the variability of Texas Red
transferrin fluorescence. In contrast, only 0.2% of the variabil-
ity in Alexa 488-transferrin fluorescence is explained by vari-
ability in Texas Red dextran fluorescence.

Formulated in 1896 by mathematician/eugenicist Karl Pear-
son (40) and characterized for use in fluorescence microscopy
nearly 100 years later by Manders (33), PCC is a statistic of
which its primary advantage for colocalization analysis is its
elegant simplicity. PCC measures the pixel-by-pixel covari-
ance in the signal levels of two images. Because it subtracts the
mean intensity from each pixel’s intensity value, PCC is
independent of signal levels and signal offset (background).
Thus PCC can be measured in two-color images without any
form of preprocessing, making it both simple and relatively
safe from user bias. Tools for quantifying PCC are provided in
nearly all image analysis software packages.

Whereas the meaning of extreme values of PCC is generally
clear, intermediate values are more difficult to interpret, except
when used in comparative studies. Our laboratory has used
PCC in a number of studies as a means of characterizing
different endocytic pathways. For example, quantitative com-
parisons of the distributions of Rab10, Rab11, and internalized
transferrin and immunoglobulin A (IgA) were used to identify
two types of endocytic compartments in polarized MDCK
cells: one predominantly containing internalized transferrin
and associated with Rab10 (Fig. 2D) and one containing
internalized IgA and associated with Rab11 (Fig. 2E) (4). The
same analysis showed that a single point mutation in Rab10
altered its distribution such that it matched Rab11. Whenever
possible, the appropriate performance of a colocalization anal-
ysis should be demonstrated with positive and negative con-
trols. In the studies described above, the positive control of the
colocalization analysis was provided by evaluation of cells that
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had internalized two different colors of transferrin. The nega-
tive control was provided by quantifying PCC for the same
images, but after rotation of one by 90 degrees, a condition in
which only random colocalization is observed (Fig. 2F).

In many image analysis software packages, PCC is mea-
sured for entire images by default. However, PCC should
generally be measured for individual cells, which can be
accomplished by hand-drawing a “region of interest” (ROI)
over the image. The issue here is that, since PCC values depend
upon a simple linear relationship, they will be depressed if
measured over a field of cells with heterogeneous expression or
uptake of the target molecules, thus under-representing the
degree of correlation. For example, we find that transferrin and

IgA are both internalized into the same early endosomes of
Chinese hamster ovary (CHO) cells transfected with transferrin
receptor and polymeric Ig receptor (Fig. 3, A–C). Indeed, the
two are internalized in a constant proportion that reflects the
relative number of transferrin and polymeric Ig receptors
expressed by the cell. However, because the numbers of
transferrin and polymeric Ig receptors expressed varies be-
tween cells, the ratio of transferrin to IgA internalized likewise
varies between cells, an effect that is apparent in the different
color of the endosomes in the merged color image. The
different ratios of transferrin to IgA are even clearer in the
combined scatterplot of the three cells, which shows three
different linear relationships (Fig. 3D). Accordingly, whereas

Fig. 2. Colocalization analysis of endocytic probes.
A: three-dimensional stereopair image of a maximum
projected image volume MDCK cells following incu-
bation with Oregon Green-IgA and Texas Red-transfer-
rin (Tf). B: scatterplot of red and green pixel intensities
of MDCK cells following incubation with Oregon
Green-IgA and Texas Red-transferrin. C: scatterplot of
individual red and green pixel intensities of brefel-
dinA-treated MDCK cells following incubation
with Oregon Green-IgA and Texas Red-transferrin.
D: Pearson’s correlation coefficients (PCCs) of im-
ages of internalized Texas Red-transferrin and green
fluorescent protein (GFP)-Rab10 or GFP-Rab11a in
MDCK cells. E: PCCs of images of internalized
Cy5-IgA and GFP-Rab10, GFP-Rab11a, or GFP-
Rab10-Q68L in MDCK cells. F: PCCs of images of
Texas Red-transferrin and Cy5-transferrin internal-
ized by MDCK cells before and after rotating Cy5-Tf
image by 90 degrees. A–C were reproduced with permis-
sion from the Company of Biologists (http://jcs.biologists.
org), Wang EX et al. “Brefeldin A rapidly disrupts plasma
membrane polarity by blocking polar sorting in common
endosomes of MDCK cells.” J Cell Sci 114: 3309–3321,
2001. D–F were reproduced and adapted with permission
from The American Society for Cell Biology, from Bab-
bey CM et al. “Rab10 regulates membrane transport
through early endosomes of polarized Madin-Darby Ca-
nine Kidney cells.” Molec Biol Cell 17: 3156–3175, 2006.
(www.molbiolcell.org) (4).
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the PCC for each cell in the field is relatively high (0.88, 0.85,
and 0.89 in the indicated ROIs), the scatter in the combined
data is such that PCC is reduced to 0.66 when measured over
the whole image, under-representing the high degree of corre-
lation between the two probes.

The problem of cell-cell variability is particularly pervasive
in studies of cells transiently expressing GFP chimeras, since
expression of the transfected protein can vary widely between
cells. Figure 3E shows a field of MDCK cells transiently
transfected with GFP-Rab10 following internalization of fluo-
rescently labeled transferrin. The internalized transferrin (Fig.
3F) colocalizes extensively with GFP-Rab10 (Fig. 3G), but the
high expression of GFP-Rab10 in the cell at the left of the field
results in a high ratio of green to red fluorescence when
compared with the two cells on the right. As with the example
above, the differences are more apparent in the scatterplot of
the combined pixel data, which shows two different linear
relationships (Fig. 3H). As a consequence, while measurement

of the PCC in each cell indicates a reasonably strong correla-
tion (0.69, 0.56, and 0.57 in the indicated ROIs), the PCC of
the entire image measures only 0.07.

Although it may not seem intuitive, unlabeled extracellular
regions (sometimes confusingly called “background pixels”)
can artificially inflate PCC values if included in the region of
measurement. This effect results from the fact that these empty
areas contain pixels for which both the red and green signals
are significantly below their average levels. This point is
demonstrated by an analysis of the image shown in Fig. 3I, an
immunofluorescence image of mitochondria (red, Fig. 3J) and
filamentous actin (green, Fig. 3K). Quantification of PCC
values over the region occupied by the cells indicates a poor
association between the distribution of actin and mitochondria
(PCC � 0.16). However, when quantified over the entire
image, including empty areas between the cells, PCC increases
to 0.39. By simply including pixels from extracellular regions
that lack significant amounts of either red or green signal, the

Fig. 3. Importance of the region of interest (ROI) for measuring PCC. A: maximum projection of an image volume of transfected Chinese hamster ovary (CHO)
cells following incubation with Texas Red-transferrin (B) and Oregon Green-IgA (C). D: combined scatterplot of red and green pixel intensities of the three cells
in the indicated ROIs of A, showing 3 different linear relations. E: image of a single plane of polarized MDCK cells incubated in Texas Red-transferrin (F), 3
of which express GFP-Rab10 at different levels (G). Arrows indicate endosomes labeled for both transferrin and Rab10. H: combined scatterplot of red and green
pixel intensities of the three ROIs shown in E, showing 2 different linear relations. I: single image plane of fluorescently labeled actin (J) and mitochondria in
bovine endothelia (K). L: scatterplot of red and green pixel intensities of the image shown in I. Values from pixels outside the cells are shown in red. M: image
of a single plane from an MDCK cell following incubation in Texas Red-dextran (red) and Alexa 488-transferrin (green). N: as in M but an image plane passing
through the nucleus. O: scatterplot of red and green pixel intensities of the middle cell shown in N. Values from pixels from the region of the nucleus are shown
in red. P: scatterplot of red and green pixel intensities from the cytosolic region of the middle cell, delineated with the ROI shown in N.
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PCC of two essentially uncorrelated probes is significantly
increased. The influence of extracellular pixels obviously de-
pends on their number. For the example described here, more
than one-third of the pixels used in this correlation arise from
outside the cell (depicted in red in the scatterplot shown in Fig.
3L). This error, while seemingly obvious, is deceptively easy to
commit. For the incautious investigator, measuring PCC over
an entire field of cells labeled in this way would result in PCC
values that varied inversely with cell plating density.

The examples above demonstrate that carefully outlining the
region in which two probes may potentially distribute is critical
to accurate measurement of PCC. However, it may not be
enough to simply outline the cell; there may be regions within
the cell that exclude the structures of interest. Consider the
example of two probes that associate with vesicles. Insofar as
intracellular vesicles are excluded from the nucleus, their
mutual exclusion from the nucleus is no more meaningful than
their mutual exclusion from the extracellular space. If pixels
from these regions are included in analysis, they will artifi-
cially inflate PCC measurements, in the same way that pixels
from the extracellular space artificially inflate PCC measure-
ments. Figure 3M shows an image of an MDCK cell in which
lysosomes have been labeled with fluorescent dextran and
endosomes with fluorescent transferrin. The two probes label
distinct compartments, as reflected in a PCC of 0.04 for the cell
at the center of this image. However, if we examine an image
collected in a focal plane that includes a cross-section of the
nucleus (Fig. 3N), from which both probes are excluded, PCC
increases to 0.16. The scatterplot shown in Fig. 3O shows that
the points measured from the region of the nucleus (shown in
red) cluster near the origin, artificially increasing the linear
relationship in the data. If we measure PCC in an ROI that
excludes the nuclear region, PCC returns to a measurement
similar to that obtained in non-nuclear planes (0.06).

An alternative approach for excluding irrelevant pixels is to
restrict analysis to pixels whose intensity falls above a thresh-
old value. This technique may involve a process in which a
region of the scatterplot (also, confusingly called the ROI) is
identified as reflecting “background” and the pixels whose
intensities fall in this range are omitted from analysis. This
widely implemented method can be much simpler than the
laborious process of manually outlining an ROI on the original
image. However, eliminating low-intensity pixels runs the risk
of eliminating regions of mutual exclusion within the cells
which, if they represent areas in which the probes could
potentially distribute, are meaningful to quantifications of
probe distributions. For the example shown in Fig. 3N, pixel
intensities of the nuclear region (shown in red in Fig. 3O)
superimpose over a population of pixel intensities from the
cytosol (shown in Fig. 3P). Thus an intensity-based procedure
that eliminated the pixels of the nuclear region would have the
undesired effect of eliminating pixels from the relevant cyto-
solic region as well. Thus, when using an intensity-based
approach for eliminating irrelevant pixels, it is crucial to
evaluate its effect on relevant pixels.

Interpreting PCC measurements: should your colocalization
data be measured by their fit to a linear relationship? To
productively use PCC to measure colocalization, it is important
that investigators understand exactly what PCC measures. PCC
quantifies the degree to which the variability in red and green
pixel intensities can be explained with a simple, linear rela-

tionship between the two. Thus it is sensitive to both signal
co-occurrence (the degree to which, for each pixel, red and
green intensity values are either both above background or both
below background) and the more rigorous condition of signal
correlation (pixel-for-pixel proportionality in the signal levels
of the two channels). To the degree that the biology of the
system is such that can be modeled by a linear relationship in
the levels of two probes, PCC is an appropriate measure of
association. However, there are many biological conditions in
which this simple model is inadequate, in which cases PCC
measurements only indirectly reflect probe colocalization.

First, insofar as PCC measures fit to a single linear relation-
ship, it provides a poor measure of colocalization in more
complex situations, such as when probes co-occur in different
proportions in different compartments of the cell. Much like
the examples of PCC quantification in heterogeneous cells,
PCC values will be depressed if measured in a population of
heterogeneous intracellular compartments. For example, as
mentioned previously, we have found that transfected MDCK
cells internalize transferrin and IgA into the same set of
endosomes from which IgA is then sorted to an apical recy-
cling endosome. As a consequence, transferrin and IgA occur
at similar concentrations in early endosomes, but the concen-
tration of transferrin is much reduced relative to IgA in the
downstream compartment. These compartments are arrayed
along an apical-basal axis such that early endosomes captured
in medial planes of the cell (Fig. 4A) are gradually replaced by
apical recycling endosomes as one shifts the focus to the tops
of the cells (Fig. 4, B and C). The change in the ratio of IgA to
transferrin is shown not only in the change in the color of the
overlaid images but also in the scatterplots of the three regions,
which show the relationship of the two probes in the apical
planes in red, that of the medial planes in green and the
intermediate planes in blue (Fig. 4D). The presence of two
kinds of compartments, with a ninefold difference in the
proportion of IgA to transferrin, generates scatter in a two-
dimensional scatterplot that cannot be explained with a simple
linear model, resulting in a PCC value that under represents the
degree of colocalization (in this case, 0.66 for the entire
volume of the top cell in the field). In situations such as this,
where the data are more complex than modeled by linear
regression, PCC measurements are ambiguous, if not mislead-
ing.

As discussed previously, even if two probes co-occur on the
same cellular structures, there may be no reason that they
should co-occur in fixed proportion to one another. For the
situation shown in Fig. 1A, in which two transferrin conjugates
are internalized and trafficked in proportion to their concen-
trations, PCC provides an excellent metric of colocalization.
However, for studies in which proportional codistribution is
not necessarily expected, PCC can provide a poor measure of
colocalization. An example of such a case is shown in the
image of immunolocalized EEA1 (red) in MDCK cells ex-
pressing GFP-RhoB (green), shown in Fig. 4E. Although the
two probes distribute to the same intracellular compartments
(compare Fig. 4, F and G), the ratio of the two probes varies
considerably within and between structures, as evidenced by
the varying color of the combined color image and the exten-
sive spread in the scatterplot (Fig. 4H). Thus, despite the
extensive overlap between the two, PCC is relatively low
(0.73).
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Thus for investigators primarily interested in quantifying probe
overlap, PCC is an equivocal measure of colocalization; depend-
ing upon proportionality, extensively overlapping probes may
yield either high or low PCC values. The influence of proportion-
ality on PCC can be directly demonstrated with the following
example. Reducing the background levels in the image shown
in Fig. 1A to zero results in an image with a PCC of 0.92. If we
then convert all of the non-zero values to a constant value, thus
removing the correlation of signal levels within and between
labeled structures, but not reducing overlap, PCC is reduced to
0.70. Thus two images with the same amount of signal overlap
can have dramatically different PCC values; in one case ex-
plaining 85% of the variability, in the other explaining less
than half.

As with the visual inspection of color-merged images, the
researcher needs to be clear as to whether probe colocalization
in a particular study is expected to be accurately modeled by a
single linear relationship. To the degree that the signal levels of
two probes are not predicted to be linearly related, and thus that
the investigator is interested in probe occurrence alone, PCC
provides an indirect and sometimes poor metric of colocaliza-
tion.

At the opposite extreme, it has also been argued that colo-
calization should only quantify pixel-by-pixel correlation in the
subset of pixels that contain both fluorophores (2). Limiting
measurements to pixels that contain both probes profoundly
changes the parameter that is measured by PCC. If one is
interested in evaluating the distribution of a probe, the regions
from which the probe is excluded are as meaningful as those in
which the probe is found (as long as these regions are poten-
tially accessible to the probe). In the case of analyzing cellular
distributions, if one limits colocalization analysis to pixels that

contain both probes, the PCC is changed from a measure of
probe codistribution within the cell to one addressing probe
codistribution within the structures cohabited by the probes.

As expected, this procedure yields high values of PCC for
probes with proportional codistributions. For the image of two
colors of transferrin internalized into endosomes of MDCK
cells, shown in Fig. 1A, PCC measures 0.94 if measured for all
pixels in the image and 0.88 if measured only for pixels that
contain both red and green signals above background levels. In
contrast, this approach yields low PCC values under conditions
in which probes overlap but not in a fixed proportion. For the
image of immunolocalized EEA1 and GFP-RhoB shown in
Fig. 4E, PCC is reduced from 0.73 to 0.45 if measured only in
pixels containing signal from both probes.

One significant complication that arises in applying this
technique is that it requires methods to classify pixels as either
containing or lacking a fluorescent probe. While this might
seem simple, the process of distinguishing signal from back-
ground is frequently a complex problem, as described later.

Manders overlap coefficient. In response to the perceived
difficulty of interpreting negative PCC values, an alternative
but closely related metric, the Manders Overlap Coefficient
(MOC) (34), was developed. MOC is described by the equa-
tion:

MOC �
�i �Ri � Gi�

��i Ri
2 � �i Gi

2

MOC is implemented in image analysis software packages,
such as Colocalizer Pro, Image-Pro, Imaris, and Volocity and
can be implemented in ImageJ via the JACoP plugin.

Fig. 4. Colocalization without a simple linear relationship. A: medial focal plane of MDCK cells incubated with Texas Red-transferrin (red) and Oregon Green
IgA (green). B: as in A but collected 1.2 �m higher. C: as in A but collected 2.4 �m higher. D: scatterplots of red and green pixel intensities of the top cell
collected from the focal plane shown in A (green), B (blue), or C (red). E: single image plane of an MDCK cell immunolabeled for EEA1 (F), expressing
GFP-RhoB (G). Arrows indicate a few examples of compartments labeled with both probes. H: scatterplot of red and green pixel intensities of the cell shown
in E.

Review

C729MEASURING COLOCALIZATION IN BIOLOGICAL MICROSCOPY

AJP-Cell Physiol • VOL 300 • APRIL 2011 • www.ajpcell.org

 on A
pril 11, 2011

ajpcell.physiology.org
D

ow
nloaded from

 

http://ajpcell.physiology.org/


Eliminating the subtraction of mean signals from the equa-
tion has the effect of preventing negative MOC values, which
may be reassuring to investigators confused by negative mea-
surements of correlation. However, it has a variety of other
consequences that are arguably more confusing. Figure 5, A–C,
shows examples of data that are positively correlated, nega-
tively correlated, and uncorrelated, with PCC values of 0.73,
�0.71, and �0.03, respectively. Whereas an MOC value of
0.99 is obtained for the positively correlated data of Fig. 5A, a
similar value is obtained for the negatively correlated data of
Fig. 5B (0.92) and even for the uncorrelated data of Fig. 5C
(0.97). While this is at first confusing (if not troubling), this
behavior reflects the fact that, unlike PCC, MOC is almost
independent of signal proportionality, instead it is primarily
sensitive to co-occurrence, the fraction of pixels with positive
values for both channels, regardless of signal levels. This is
demonstrated in Fig. 5D, which shows MOC and PCC mea-
surements for sets of random data like those shown in Fig. 5C
but with different constant values subtracted from each.
Whereas PCC values are essentially unaffected by the down-
ward shift in the distributions, MOC values decline as the
fraction of pixels with positive values decreases. MOC reaches
0 only when the two probes are completely mutually exclusive;
i.e., there are no pixels with positive values for both channels
(not shown).

In the context of the argument made above, that colocaliza-
tion need not imply proportional codistribution, the insensitiv-
ity of MOC to signal proportionality might suggest MOC as a
better indicator of colocalization than PCC for some analyses.
However, MOC only indirectly and somewhat unpredictably
measures co-occurrence. [A very complete dissection of this

and several other problems with MOC as a measure of colo-
calization has recently been provided by Adler et al. (2).] If the
goal is to measure the co-occurrence of two probes, it can be
better measured directly as the fraction of one probe that is
coincident with the second probe, as described below.

Fractional overlap. Whereas PCC provides an effective
statistic for measuring overall association of two probes in an
image, it has the major shortcoming that it indirectly (and
sometimes poorly) measures the quantity that is typically at the
heart of most analyses of colocalization in cell biology: the
fraction of one protein that colocalizes with a second protein.
This quantity can be measured via Manders’ Colocalization
Coefficients (MCC) (34), metrics that are widely used in
biological microscopy and have been implemented in all bio-
logical image analysis software packages. For two probes,
denoted as R and G, two different MCC values are derived, M1,
the fraction of R in compartments containing G and M2, the
fraction of G in compartments containing R. These coefficients
are simply calculated as:

M1 �
�i Ri,colocal

�i Ri

where Ri,colocal � Ri if Gi � 0 and Ri,colocal � 0 if Gi � 0 and

M2 �
�i Gi,colocal

�i Gi

where Gi,colocal � Gi if Ri � 0 and Gi,colocal � 0 if Ri � 0
By providing measures of the fraction of total probe fluo-

rescence that colocalizes with the fluorescence of a second

Fig. 5. Manders’ Overlap Coefficient (MOC) as a measure of
colocalization. A: scatterplot of positively related red and
green pixel values, PCC � 0.73, MOC � 0.99. B: scatterplot
of negatively related red and green pixel values, PCC �
�0.71, MOC � 0.92. C: scatterplot of uncorrelated red and
green pixel values, PCC � �0.03, MOC � 0.97. D: PCC
(circles) and MOC (squares) measurements for uncorrelated
data similar to that shown in C, as a function of offset. Solid
symbols reflect offset in both red and green channels. Open
symbols reflect offset in the red channel alone.
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probe, MCCs provide an intuitive and direct metric of the
quantity of interest for most biological colocalization studies.
Unlike PCC, MCC strictly measures co-occurrence indepen-
dent of signal proportionality.

While simple in principle, measuring MCC is complicated
by the fact that the input values used to measure MCC can
almost never be taken directly from the original images. The
problem is in the numerator of each expression, where pixel
values are included in the sum if they occur in pixels in which
the signal from the second probe exceeds zero. While such
pixels might seem to be self-evident, pixel values of zero are
seldom obtained in fluorescence images, which typically con-
tain “background,” low signal levels in the image derived from
light leakage into the system, autofluorescence, “nonspecific”
labeling, and probe fluorescence arising from out-of-focus
image planes. Although background could be eliminated in the
collection process by adjusting detector settings, microscopists
generally maintain a positive offset in detector settings to
ensure that weak signals are detected; thus the detection pro-
cess additionally contributes to background. Since MCC de-
pends utterly upon the ability to distinguish pixels with signal
derived from a labeled structure in the focal plane from pixels
whose signal results strictly from background sources, a nec-
essary preliminary step is thus to eliminate the component of
pixel intensity derived from background. The bulk of the
thought and effort of applying MCCs generally goes into
identifying and subtracting background values from images, so
that the image contains meaningful “zero” values.

The most obvious method for eliminating background is to
subtract a global threshold value from the pixel intensities of
the image. However, for many images, estimating the appro-
priate threshold value representing background is challenging.
More importantly, for images in which much of the fluores-
cence occurs in structures whose intensity is close to that of the
background, MCC is very sensitive to the value chosen for the
threshold. Taking the example of the image shown in Fig. 1A,
increasing the threshold of the green channel by only five gray
levels decreases the estimated overlap of red signal with green
signal from 92% to 82%. The sensitivity of MCC to the
estimate of background is disquieting and indicates the impor-
tance of an automatic, or at least nonsubjective, reproducible
method for determining background.

Costes et al. (14) developed a unique approach for automat-
ically identifying the threshold value to be used to identify
background based on an analysis that determines the range of
pixel values for which a positive PCC is obtained. In this
approach, PCC is measured for all pixels in the image and then
again for pixels for the next lower red and green intensity
values on the regression line. This process is repeated until
pixel values are reached for which PCC drops to or below zero.
The red and green intensity values on the regression line at this
point are then used as the threshold values for identifying
background levels in each channel. Only those pixels whose
red and green intensity values are both above their respective
thresholds are considered to be pixels with colocalized probes.
MCC is then calculated as the fraction of total fluorescence in
the region of interest that occurs in these “colocal” pixels.

The Costes method for estimating thresholds is a robust and
reproducible method that can be easily automated, both speed-
ing processing and eliminating user bias. The method has been
implemented in the Imaris, Slidebook, and Volocity software

and in ImageJ plugins (JACoP, WCIF) and has been widely
applied to studies in cell biology (5, 10, 11, 18, 44, 47, 49).

In many cases, the Costes method provides a quick and
effective method for distinguishing labeled structures from
background, thus supporting accurate measurement of MCC.
For example, for the images of immunolocalized EEA1 and
GFP-RhoB, shown in Fig. 6A, the Costes method effectively
distinguishes labeled endosomes from background, as shown
in the binarized versions of the images after applying the
calculated thresholds (Fig. 6B). MCC calculations, based on
these thresholds, indicate that 85% of the EEA1 is found in
compartments associated with GFP-RhoB and 78% of the
GFP-RhoB associates with compartments containing EEA1
(shown in white).

Application of Costes thresholds to images of internalized
transferrin and dextran in MDCK cells (Fig. 6C) likewise
effectively distinguishes labeled structures from background
(Fig. 6D). MCC calculations from these thresholds indicate
that 5% of the internalized dextran localizes with transferrin
and 19% of the transferrin localizes with dextran (shown in
white).

The Costes approach also effectively distinguishes intracel-
lular compartments labeled with GFP-EDH1. Figure 6E shows
an image of a single focal plane of fluorescent transferrin (red)
internalized into MDCK cells expressing GFP-EHD1 (green).
Comparison of the individual images (Fig. 6F) suggests that
the majority of the internalized transferrin is found in compart-
ments associated with GFP-EHD1. This impression is sup-
ported by MCC analysis of the cell delineated with the ROI in
Fig. 6E following application of Costes thresholds (Fig. 6G),
indicating that 71% of the transferrin is found in compartments
associated with GFP-EHD1.

As with any image analysis technique, the results of the
Costes thresholding method should always be checked visu-
ally. Under some circumstances, the Costes procedure can fail
to identify a useful threshold. For example, previous studies
have shown that Costes thresholding struggles with images that
have very high labeling density or large differences in the
number of structures labeled with each probe (13). In our
experience, the Costes method is effective for images with high
signal-to-background ratios, but in images with low signal
levels it frequently identifies a threshold value that is so low
that it fails to discriminate labeled structures from background.
For example, in the image of fluorescent IgA and transferrin
internalized into CHO cells (shown in Fig. 7, A and B), the
Costes threshold for the cell in the indicated ROI is so low that
more than 81% of the cellular region is scored positive for
transferrin and 92% of the cellular region is scored positive for
IgA (Fig. 7C). Not surprisingly, MCC analysis indicates an
astonishingly high overlap between the two probes: 97% of the
transferrin is identified as colocalizing with IgA and 100% of
the IgA is identified as colocal with transferrin (shown in
white). Similar results were obtained in an analysis of the
distribution of two transferrin probes, shown in Fig. 1A; the
Costes method identifies 93% and 97% of the cell as positive
for red and green probes, respectively, resulting in MCC values
of 100% for each. For these examples, it is clear that pixel
values corresponding to the point on the regression where the
correlation shifts from positive to negative are too low to
adequately discriminate labeled from unlabeled cellular struc-
tures, leading to meaningless MCC measurements. Software
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implementations of the Costes algorithm typically accommo-
date this problem by including the capability to change the
point on the regression used to identify thresholds. However, in
doing this, one negates a primary advantage of the Costes
approach: that it removes subjectivity from MCC computa-
tions. An alternative nonsubjective approach might be to iden-
tify the thresholds as the lowest points on the regression line
where the correlation remains significant. This criterion will
result in higher thresholds but is complicated by the problem of
significance testing of correlations, a thorny problem that we
discuss later.

Regardless of the criterion used to select the thresholds, the
Costes approach fails to address a more general problem for
thresholding images: background levels vary spatially in many
cases so that no one background value is appropriate for the
entire image. Spatial variation in background may result from
spatial inhomogeneity in illumination or detection or from
out-of-focus fluorescence, which may be appreciable even in

confocal fluorescence images. This problem is exemplified in
the image of an MDCK cell that has internalized two fluores-
cent conjugates of transferrin into endosomes shown in Fig.
7E. Costes thresholding results in classification of nearly the
entire image as positive for red and green probes (Fig. 7F). As
with the other examples described above, the Costes method
identifies thresholds that are too low to distinguish labeled
structures from background in this image. However, the prob-
lem is not simply one of underestimating the appropriate
threshold value. Increasing the threshold distinguishes individ-
ual endosomes in the periphery of the cell, but not at the center,
a thicker part of the cell (Fig. 7G). Increasing the threshold
further eliminates background around the endosomes at the
center of the cell but eliminates the peripheral endosomes
altogether (Fig. 7H). It is clear that a single threshold value will
not satisfactorily identify background throughout this image.

For studies of dispersed objects, such as endosomes, we
have found that an effective measure of local background can

Fig. 7. Background correction via Costes automatic thresholding method and median subtraction. A: maximum projection of an image volume of transfected CHO
cells following incubation with Texas Red-transferrin (red) and Oregon Green-IgA (green). B: individual images from A. C: binary versions of images of the
cell in the ROI shown in B, after applying Costes threshold. Pixels with positive signals for both probes are shown in white. D: binary versions of images of
the cell in the ROI shown in C following subtraction of a 32 � 32 pixel median and thresholds of 8 and 8. E: maximum projection of an image volume of MDCK
cells incubated with Texas Red-transferrin (red) and Alexa 488-transferrin (green). F: binary versions of images shown in E, after applying Costes threshold.
Pixels with positive signals for both probes are shown in white. G: binary version of image of Texas Red transferrin shown in E, after applying a threshold of
57. H: binary version of image of Texas Red transferrin shown in E, after applying a threshold of 139. I: pixel intensities along a line in the image of Texas Red
transferrin shown in E. Green, original intensities. Black, local median intensities. Red, intensities after subtraction of local median from original intensities.
Blue, Costes threshold. J: binary versions of the images shown in E following subtraction of a 32 � 32 pixel median, and thresholds of 27 and 23.
K: single image plane of an MDCK cell expressing GFP-Rab7 (green) following incubation with diI-LDL (red). L: individual images from K. Arrows
indicate endosomes labeled for both probes. M: binary versions of images of the cell in the ROI shown in L, after applying Costes threshold. Pixels with
positive signals for both probes are shown in white. N: binary versions of images of the cell in the ROI shown in L following subtraction of a 32 � 32
pixel median, and thresholds of 42 and 22.

Fig. 6. The Costes automatic thresholding method. A: single
image plane of a polarized MDCK cell immunolabeled for
EEA1 (red) and expressing GFP-RhoB (green). B: binary
versions of images shown in A, after applying Costes threshold.
Pixels with positive signals for both probes are shown in white.
C: maximum projection of an image volume of Texas Red-
dextran (red) and Alexa 488-transferrin (green) internalized by
an MDCK cell. D: binary versions of images shown in C, after
applying Costes threshold. Pixels with positive signals for both
probes are shown in white. E: image of a single focal plane
image of MDCK cells expressing GFP-EHD1 (green) after
incubation with Texas Red-transferrin (red). F: individual im-
ages from E, with arrows indicating compartments containing
both probes. G: binary versions of the cell within the ROI
shown in E, after applying Costes threshold. Pixels with posi-
tive signals for both probes are shown in white.
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be derived from the median intensity in a relatively large
region surrounding each pixel in the image (typically between
24 � 24 and 36 � 36 pixels in size) (4, 15, 16, 35, 46). In this
approach, the image is spatially filtered to remove pixel noise
and a background image is constructed in which the value of
each pixel in the original image is replaced with the median
intensity in the region surrounding the pixel. This background

image is then subtracted pixel-by-pixel from the filtered image
to obtain a background-subtracted quotient image. As long as
the size and density of objects is such that they occupy less
than half of the region size, the median provides an accurate
measure of the local background. Thus the size of the region is
critical; it must be large enough to predominantly measure the
region surrounding objects but small enough to reflect spatial
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variation. Since there are some low residual values remaining
in pixels of unlabeled regions after median subtraction, a small
value is subtracted from the quotient image, producing an
image with zero values in unlabeled regions, making it suitable
for quantifying MCCs.

The effectiveness of median subtraction is demonstrated in
the line intensity profiles shown in Fig. 7I. The pixel intensity
along a line traced over the image shown in Fig. 7E is shown
in green, with spikes occurring at the points along the line that
pass through endosomes. It can be seen that a background level
determined by the Costes threshold (indicated in blue) fails to
discriminate individual endosomes, identifying the entire re-
gion of this line as above background. In contrast, the median
intensity of a 32 � 32 pixel region (indicated in black), follows
the low-frequency background variation in the image closely,
more closely approximating the background levels between
endosomes even in the center of the region. Subtracting the
median intensities from the original image results in an inten-
sity profile (shown in red), for which a single value can be
subtracted to distinguish individual endosomes from back-
ground.

Figure 7J shows binarized versions of the images shown in
Fig. 7E, following background subtraction and thresholding.
Visual inspection of this image shows that this process has
more effectively eliminated background from the image, more
clearly distinguishing individual transferrin-containing endo-
somes in both the periphery and perinuclear regions of the cell.
MCC calculations using these background values indicate that
93% of the red transferrin occurs in compartments containing
green transferrin, and 66% of the green transferrin occurs in
compartments containing red transferrin (reflecting the dimmer
labeling from the red transferrin). Median subtraction has
likewise effectively isolated endosomes from background in
the image shown in Fig. 7A, as shown in the binarized images
shown in Fig. 7D. MCC calculations using these background
values indicate that 76% of the internalized IgA occurs in
compartments containing transferrin and 74% of the internal-
ized transferrin occurs in compartments containing IgA.

A more complex situation is shown in Fig. 7K, which shows
the intracellular distribution of internalized diI-LDL (red) in a
living MDCK cell expressing GFP-Rab7 (green). The individ-
ual channels show that LDL localizes predominantly in com-
partments associated with GFP-Rab7 (see arrows in Fig. 7L).
Whereas the Costes method effectively isolates individual
endosomes in the image of diI-LDL, a much larger region of
the cytosol is identified as above background in the image of
GFP-Rab7 (Fig. 7M). Better discrimination of the intracellular
compartments is obtained using backgrounds applied after
median subtraction (Fig. 7N). MCC analysis of these images
indicates that 71% of the diI-LDL occurs in compartments
associated with GFP-Rab7 and 20% of the vesicular GFP-Rab7
is found in compartments containing diI-LDL.

However, one could fairly ask whether median subtraction is
appropriate for analyzing the distribution of a protein like
GFP-Rab7. Whereas we can confidently ignore cytosolic sig-
nals in samples labeled by probes that we know are contained
within punctate vesicular compartments, a sizable fraction of
peripheral membrane proteins like Rab7 will in fact be located
in the cytosol. By eliminating this diffuse fluorescence from
analysis, median subtraction restricts colocalization analysis to
the vesicular pool of GFP-Rab7. This is appropriate for esti-

mating the fraction of vesicular GFP-Rab7 associated with
endosomes containing diI-LDL but will lead to overestimates
of the fraction of total cellular GFP-Rab7 associated with
diI-LDL. As with the Costes method described above, one
must always evaluate the results of the method used to identify
image background and choose the method that is appropriate to
the biology of the system.

Comparison of Pearson’s Correlation Coefficient and
Manders’ Colocalization Coefficient

PCC and MCC represent the two major metrics of colocal-
ization used in biomedical research. Strictly speaking, neither
is superior to the other; both have strengths and weaknesses
that, depending on the situation, make one or the other the
preferred metric.

The most obvious advantage of MCC is that it is a more
intuitive measure of colocalization than PCC. MCC is also
more useful for data that are poorly suited to the simple, linear
model that underlies PCC. For example, in the image shown in
Fig. 4E, nearly all of the immunolocalized EEA1 appears to
occur in compartments associated with GFP-RhoB. This ap-
pearance is quantitatively supported by MCC analysis indicat-
ing that 85% of the EEA1 localizes to compartments associated
with GFP-RhoB. However, PCC measurement indicates a
relatively poor association between the probes (PCC � 0.73)
due to the fact that, while colocalized, the ratio of the probes
varies widely (Fig. 4H). For this study, MCC would be con-
sidered the better metric of colocalization because it is inde-
pendent of signal proportionality. In general, cases in which
probes are not proportionally codistributed will yield ambigu-
ous, intermediate PCC values that are hard to interpret. Rather
than indicating a partial colocalization, these intermediate
values may indicate a mismatch between the data and the
underlying model of PCC.

Another obvious advantage of MCC over PCC is that it
provides two components: the fraction of A with B and the
fraction of B with A. This is important when the probes
distribute to different kinds of compartments, as for example,
in the case in which all of A is found in compartments
containing B, but B is also found in additional compartments
lacking A. Consider the example of a study in which an
investigator has fluorescently labeled a protein that associates
with vesicles and would like to know if these vesicles associate
with microtubules. If one numerically simulates this situation
such that all of the vesicular fluorescence overlaps that of the
microtubules but only 20% of the microtubule fluorescence
overlaps that of vesicles, one obtains a depressingly low PCC
of 0.2. However, this same value is obtained if only 20% of the
vesicular fluorescence overlaps that of microtubules, if 100%
of the microtubule fluorescence overlaps that of the vesicles.
Thus, with respect to the question of whether the vesicular
protein associates with microtubules, the same low PCC value
is obtained for essentially opposite experimental outcomes.
This problem is realized in the analysis of diI-LDL and
GFP-Rab7 in the image shown in Fig. 7K. Although MCC
analysis indicates that 71% of the internalized LDL localizes to
compartments associated with GFP-Rab7, the PCC value ob-
tained for this cell is very low (0.32) because of the large
number of GFP-Rab7 compartments in excess of those labeled
with diI-LDL (80% of the GFP-Rab7 occurs in regions lacking
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diI-LDL). This is another example of complex data in which
pixel intensities of the two probes are not related by a simple,
linear relationship. For these kinds of data, PCC yields ambig-
uous results, whereas MCC more directly measures the quan-
tity of interest.

MCC analysis is also more appropriate for three-dimen-
sional analysis of colocalization, which is required for studies
in which probe colocalization varies spatially in a cell. While
these variations may be appropriately sampled when they occur
within a single focal plane, they are insidious when they occur
vertically in a cell since results become completely dependent
on the particular focal plane that was captured. This kind of
vertical heterogeneity is apparent in the distributions of inter-
nalized IgA and transferrin shown in Figs. 2 and 4. While PCC
can be quantified in three-dimensional image volumes, it is
poorly suited to the kind of complexity that requires three-
dimensional analysis in the first place, as discussed above.
MCC analysis is also much easier to extend to three-dimen-
sional analyses (in which case it is sometimes called an
“object-based” analysis). Quantification of an overall PCC for
a three-dimensional volume of the cell requires delineation of
the region-of-interest for each focal plane from the volume and
combination of all of the identified voxels into a single array
from which PCC is calculated (46). Since MCCs are not
influenced by areas from which both probes are excluded,
MCC does not require this painful delineation of the region-
of-interest. Measurement of three-dimensional MCCs can be
accomplished either manually, by simply dividing colocal
fluorescence by total fluorescence from an entire stack of
images (as described in Refs. 32 and 42) or automatically in
software that supports three-dimensional quantification of
MCC (e.g., Volocity, as applied by Refs. 25, 26, and 44).

If circumstances require measurement of PCC throughout
the volume of a cell, a simpler alternative to three-dimensional
analysis that frequently yields comparable results is to measure
PCC in a projected image of the volume (4). The projected
image may consist either of the sum of all of the images of the
volume or the maximum intensity value for each (x,y) position
found throughout the volume. This approach is best limited to
cells with limited depth and label density such that structures
do not overlap when projected into a single image. For such
cells, projection essentially results in collection of all of the
structures from the volume into a single image that is much
easier to evaluate. In the case of the relatively flat cells shown
in Fig. 1, PCC of the projected volume of Fig. 1A compares
well with PCC quantified over the three-dimensional volume
(0.94 vs. 0.90), and PCC of the projected volume of Fig. 1E
compares well with PCC measured over the three-dimensional
volume (�0.045 vs. �0.008). MCC analysis is less forgiving
of overlap occurring in the projection process and should
seldom be applied to projected data, where it is likely to
generate spuriously high estimates of overlap. For example,
analysis of the three-dimensional volume of the two cells
shown in Fig. 3A indicates that 51–52% of the IgA colocalizes
with transferrin, whereas analysis of the projected volume
indicates 66–71% overlap. We emphasize that although we
have included projected images as examples in this review,
quantifications of projections must always be carefully vali-
dated by comparison with results obtained from three-dimen-
sional analysis.

In summary, MCC offers many practical and theoretical
advantages over PCC. The major drawback of MCC is that it
is complicated by the need to be able to reliably identify
background levels in an image and thereby identify labeled
structures. The surprisingly difficult problem of distinguishing
label from background is one that has no single answer;
different images require different strategies. For some images
a single threshold value derived via the Costes approach may
suffice. Other images may require locally determined back-
ground levels. Still others may require more elaborate methods
of object discrimination that may be daunting for many cell
biologists seeking an answer to what seems like a relatively
simple question. In our experience median subtraction is ef-
fective for discriminating punctate compartments but less ef-
fective for other kinds of structures. Other studies have dem-
onstrated effective segmentation of biological structures using
Laplace (41), Sobel (24), or watershed filters (27). The utility
of these approaches for any given application will generally
require careful evaluation and optimization. For images where
background correction is challenging, PCC analysis may still
be the preferred method, as it requires no image preprocessing
of any kind.

An Outline of a Colocalization Analysis Workflow

Despite what may seem like a relentless emphasis on prob-
lems and complications, this review is not intended to dis-
hearten investigators seeking a rigorous method for analyzing
colocalization. The wide availability of software tools for
visualizing and quantifying colocalization has made it extraor-
dinarily easy to conduct colocalization studies, and while it is
important to consider the foregoing caveats, identifying and
applying the proper technique is actually straightforward. A
general workflow is schematized in Fig. 8.

An investigator first needs to identify the nature of the
colocalization question. If one is trying to identify a molecular
interaction, this whole review is irrelevant, and the investigator
should instead use a high-resolution technique such as electron
microscopy or fluorescence resonance energy transfer.

The first step in colocalization analysis is to design and
conduct image collection (a topic more completely described in
Refs. 7, 38, 43, and 50). Investigators need to establish that
probes are both specific and sensitive, ideally as determined in
control studies in which the distributions of the probes are
compared with those of validated probes. The parameters of
image collection (illumination level, detector gain, integration
time) should be adjusted such that fluorescence signals are
collected in the linear range of the detector system (detecting
the dimmest structures without saturating signal levels in the
brightest structures). The optics of the system should be such
that crosstalk of signals between channels is negligible, a
condition that can be verified by collecting images of singly
labeled samples, using the same settings used for colocaliza-
tion studies. Finally, images of the entire three-dimensional
volume of the sample should generally be acquired, by collect-
ing a series of images using optical sectioning techniques such
as confocal microscopy, multiphoton microscopy, or image
deconvolution microscopy. Although three-dimensional anal-
ysis may not always be necessary, in these times of cheap
digital storage it is better to collect volumetric data that you do
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not need than to have to repeat the study should volumetric
analysis prove to be warranted.

Next, the investigator needs to determine whether quantifi-
cation is necessary. Quantification is primarily useful for gen-
erating values that can be compared between different condi-
tions. If no such comparisons are conducted, quantification
may add nothing more than a veneer of legitimacy to a
technique that has been traditionally been viewed as qualita-
tive. In addition, there are cases where colocalization is so
visually obvious that a number value is no more compelling
than the merged image or the data scatterplot.

If quantification is desired, the choice for most studies is
between some form of PCC and MCC. Both PCC and MCC
have strengths and shortcomings. Despite some surprising
controversy on the topic (2, 3, 7, 8), neither should be consid-
ered superior to the other; the choice of one over the other
depends on the biological question and the nature of the images
themselves. In contrast, MOC is a truly troubled metric (2) that
we cannot recommend in any circumstance that we can imag-
ine.

PCC is a very simple, thoroughly characterized, robust
measure that can be remarkably free of the influence of the
investigator’s wishes. Since PCC reflects the fit of the data to
a simple, linear relationship between the signals of the two
probes, data should first be evaluated for linearity by plotting
the values of a few representative cells in scatterplots. Pixel
intensities should follow a single, linear relationship, without
excessive scatter and without multiple relationships; e.g., ad-
ditional compartments with one, but not the other probe. If the
data indicate a simple linear relationship, one should then

randomly identify cells to be quantified and outline the relevant
ROI for each. One should then compare values measured from
single planes or from projected images with those obtained
from the entire volume to determine whether the additional
effort of measuring PCC in volumes is warranted.

To the degree that probe distributions are at least approxi-
mately linearly related, and one has carefully identified an
appropriate ROI, PCC provides a meaningful measure of probe
colocalization for most studies. That said, PCC is a somewhat
abstract measure of probe colocalization and can be misleading
in some applications. In summarizing the relative distribution
of two probes into a single statistic, it cannot separately
measure the amount of red that co-occurs with green and the
amount of green that co-occurs with red, the central question of
many colocalization studies. Perhaps more significantly, this
also means that PCC can be confounded by differences in the
number of compartments labeled with each probe. This and
other complex relationships in the data will be apparent in the
scatterplots of the pixel data, which will indicate studies for
which colocalization might be better measured as MCC.

MCC provides a measure of colocalization that is much
more meaningful to most investigators: the fraction of each
probe that is colocalized with the other. By providing two
separate measures, MCC is also independent of differences in
the number of structures labeled by each probe. Finally, MCC
does not depend on a linear relationship between the signal
levels of the two probes and is less finicky with respect to
defining the ROI, making it simpler to implement for measure-
ments of volumes. The major drawback of MCC is that
measured values are very sensitive to the estimated level of

Fig. 8. Schematic of a general colocalization analysis workflow. Upon determining that colocalization analysis is appropriate to the biological question, an in
investigator first needs to validate the fluorescent probes used to identify molecular localizations. The image collection system must be optimized to detect the
dimmest structures without saturating signal levels of the most heavily labeled structures. The optics of the system should be optimized to provide effective
discrimination such that each detector channel sensitively detects one or the other probe without cross-contamination of signal between the two signals.
Colocalization can be quantified either as Pearson’s correlation coefficient (PCC) or Manders’ correlation coefficient (MCC). A preliminary step in PCC analysis
is to visually evaluate scatterplots of the pixel intensity data to evaluate whether the data follow a simple linear relationship. With this condition satisfied PCC
can be quantified either in single images or for three-dimensional image volumes in designated ROIs that limit analysis to individual cells. If the data fail to follow
a simple linear relationship, MCC may be the preferred approach for quantifying colocalization. A preliminary step in MCC analysis is to identify the threshold
value necessary to distinguish labeled structures from background. With this accomplished, MCC can be quantified either in single images or for
three-dimensional image volumes in designated ROIs that limit analysis to individual cells. To the degree that effective thresholding cannot be accomplished,
PCC may be the preferred approach.
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background, the threshold value used to distinguish labeled
structures from unlabeled background. In general, accurate
estimation of background is subjectively evaluated via visual
inspection of the thresholded images. Given this subjectivity, it
is important to avoid bias by consistently applying the same
thresholding technique to all experimental samples. For some
images, effective thresholding can be accomplished by rela-
tively standard methods. However, many images obtained in
biological microscopy are challenging for standard threshold-
ing techniques and may require more elaborate methods of
image segmentation, which is itself a distinct field of research
for which most cell biologists have neither the time, the
training, nor the inclination.

Finally, colocalization studies will generally require some
sort of statistical analysis for interpretation, a topic considered
below.

Significance Testing in Colocalization Studies

One problem with quantifications of colocalization is that
they are seldom supported with statistical analysis. In the
absence of a statistical context for a particular value, it is
frequently difficult to interpret its meaning. Significance test-
ing in colocalization analysis can take two forms. The first
form seeks to estimate the statistical significance of differences
in the amount of colocalization measured between experimen-
tal groups. The second form seeks to identify the statistical
significance of colocalization measurements for a single exper-
imental group.

Before the significance testing is discussed, a short discus-
sion of the concept of noise is in order. Sometimes confused
with “background,” the term “noise” refers to the variability in
a measurement, whereas background refers to the amount of
offset in an image. Variability is incorporated into the calcu-
lation of PCC, such that PCC declines with noise. Noise
indirectly affects MCC by complicating the process of thresh-
olding. Noise thus results in underestimates of “true” colocal-
ization, a somewhat slippery concept except in simulated
images. The bigger issue with noise is that it confounds
comparisons when it is manifest in one condition more than the
other. Although noise is an inevitable characteristic of fluores-
cence microscopy, every effort should be made to optimize
image collection techniques for maximum signal-to-noise ra-
tios in images to be quantified. After collection, image noise
can be reduced by either deconvolution (28) or low-pass
filtering (but see discussion of autocorrelation later). Finally,
the effect of noise can be effectively corrected via a correction
factor based on an estimate of noise derived from repeated
imaging of the same field (1).

As with any metric, the significance of a difference between
two groups can be evaluated statistically. For example, our
group and others have used Student’s t-tests to test the signif-
icance of differences in PCCs (4, 46) and MCCs (26, 42). As
long as none of the confounding variables described above
differ between experimental groups (e.g., differences in signal
level, noise or the relative amount of labeling between the two
probes for PCC, differences in the accuracy of background
estimation for MCC), statistical comparison of populations is
straightforward.

A much more challenging task is to estimate the significance
of a colocalization measurement made for a single group. In

other words, while values of PCC approaching 0 or 1 may
convincingly demonstrate the absence or presence of colocal-
ization, respectively, what does one conclude about a PCC
measurement of 0.4? Actually, the statistical question is no
different from that for comparing two groups, except that
rather than evaluating the magnitude of the difference between
two groups, one evaluates the difference between the value
measured for the experimental group and for some sort of
“null” model, which reflects the measurement that would be
obtained for random data.

Readers familiar with statistics will recognize that the sta-
tistical significance of a measured PCC value can be directly
derived from the data; the probability that a given PCC value
could be obtained by chance is a function of the deviations of
the individual values from the best-fit regression line and the
number of measurements. However, the large sample size of
image PCC analysis, in which even small regions contain
thousands of values, provides enormous statistical power, such
that even subtle and biologically meaningless correlations result in
statistically significant PCC values. For example, Fig. 9A shows a
scatterplot of 500 pairs of random numbers, for which PCC
measures 0.014 (P � 0.38). Figure 9B shows an equally
unimpressive scatterplot but one for which PCC measures
0.177, a highly significant value (P � 0.00003). Regarded
cynically, this analysis demonstrates the kind of issue that
many cell biologists have with statistics, whose attitude is like
that of Mark Twain, who identified statistics as the third form
of lies (“lies, damned lies and statistics”). However, a more
enlightened perspective is that statistical analysis is capable of
identifying even subtle effects, some of which may be irrele-
vant to the desired comparison. For example, correlations of
this magnitude can easily result from gradients in the field of
illumination or lack of a flat-field correction in the microscope
objective. In these cases, statistically significant PCC values
may be obtained that reflect optical artifacts rather than a
correlation in the distribution of the two probes.

A bigger problem with statistical analysis of microscopy
image data is that significance testing of correlation coeffi-
cients is confounded by spatial autocorrelation, the condition in
which the value of one pixel is likely to be similar to that of its
neighboring pixels. Autocorrelation is essentially ubiquitous in
microscope images, resulting from two sources. First, pixel
sampling is typically arranged such a point source forms an
image over several adjacent pixels, according to the point
spread function of the imaging system. Second, labeled struc-
tures are almost invariably larger than a point source, so that
their images project onto tens or hundreds of adjacent pixels.
Shortly after the development of PCC, it was demonstrated that
autocorrelation can result in statistically significant correlations
even for variables with no real association (22). For autocor-
related variables, calculating the significance of PCC using the
usual t-test will yield a P value that is too low; red and green
values with no real association will appear to be significantly
correlated with each other far too often. Since low-pass filter-
ing increases autocorrelation, the effect of autocorrelation on
significance testing in correlation is aggravated by spatial
filters used to reduce image noise.

An alternative approach for evaluating the significance of a
colocalization measurement is to compare the mean of mea-
sured values to the mean obtained from pairs of images that are
out of registration with one another, a condition that should
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yield random colocalization. This can be accomplished by
rotating the image of one channel relative to the other (4),
shifting the image of one channel relative to the other (19, 45)
or selecting different regions of the two images (27). This
situation is essentially identical to a comparison of two exper-
imental groups, except that in this case one statistically com-
pares the mean of a set of experimental values to the mean of
a set of values obtained from misregistered data.

The most accurate method for estimating the significance of
an individual measurement of colocalization would be based
on comparison with a large number of measurements taken in
comparable samples in which the distributions of the two
probes are unrelated. The probability that the measure could be
obtained by chance, the P value, is then determined by the
fraction of measurements in the random distribution that are
greater than the measured value. However, since such “com-
parable” samples seldom exist, a practical alternative is a
randomization approach in which the random probability dis-
tribution is generated from measurements of images in which
one channel is scrambled or translated. In the “scrambling”
approach, the random probability distribution is derived from
repeated measurements of colocalization between the image of
one channel and a version of the second channel in which the
pixels, or blocks of pixels are randomly rearranged (14), an
approach subsequently applied by Refs. 7, 36, and 37. In the
“frame-translation” approach, the random probability distri-
bution is derived from a number of measurements obtained
after translating the image of one channel relative to the
other (19, 41).

Unfortunately, the scrambling approach is again compli-
cated by autocorrelation. Rearranging the individual pixels of
one channel eliminates the spatial autocorrelation of that chan-
nel, because the rearranged pixels are no longer adjacent to
their original neighbors but instead are adjacent to pixels from
other parts of the image. To the degree that the sample has
autocorrelation that is not represented in the randomized data,
the probability distribution of PCCs of the randomized data
will be narrower than that for the original data. Consequently,
deviations from the mean will appear to be more significant
than they are.

Autocorrelation also affects significance testing of MCC.
Figure 9C shows the results of a simulation in which 20 red and
20 green line segments, each 10 pixels in length, were arrayed
randomly along a line 1,000 pixels in length. This process was
repeated 1,000 times, and MCC was quantified for each trial.
The resulting distribution, shown in green, represents the
distribution of MCC measurements that would be expected to
occur for two unrelated distributions by chance alone. We next
simulated a random probability distribution by randomly dis-
tributing the 200 green pixels individually throughout the
1,000 pixel line segment, repeating this process 1,000 times
and calculating MCC for each trial. The resulting probability
distribution (shown in blue) is much narrower than the true
random probability distribution. If used to estimate random
probability of a given measurement, this narrow distribution
would consistently overestimate the significance of a measure-
ment. For example, the vertical line in Fig. 9C indicates a
measurement of 0.26. While an overlap of this size or greater

Fig. 9. Significance testing of colocalization data.
A: scatterplot of 500 red and green pixel values with
PCC � 0.014, P � 0.38. B: scatterplot of 500 red and
green pixel values with PCC � 0.177, P �0.00003.
C: green line is distribution of 1,000 MCC values
obtained after randomly distributing 20 red and 20
green pixel segments, each 10 �m in length, along a
1,000-pixel line. Blue line is distribution of MCC
values obtained after scrambling individual pixels from
each original line. Red line is distribution of MCC
values obtained after scrambling 10-pixel blocks from
each original line. Black line indicates MCC value
whose magnitude was exceeded in only 1% of the
MCC values obtained from scrambled pixels but was
exceeded by 20% of MCC values obtained from the
original lines. D: standard deviation of 100 MCCs
measured for original lines (squares) and after scram-
bling blocks of various sizes (circles). Values were
computed for line segments consisting of 40 5-pixel
segments (blue), 20 10-pixel segments (red), and 10
20-pixel segments (green).
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occurred in almost 20% of the random scrambling of the
original objects, it occurs in only 1% of the random scram-
blings of the pixels. Thus an MCC measurement that occurred
well within the range of chance would be judged highly
significant if evaluated relative to the scrambled data.

The accuracy of the probability distribution can be improved
by generating the scrambled image using blocks of pixels
rather than individual pixels. This procedure retains more of
the autocorrelation of the original data, resulting in a proba-
bility distribution that more closely approximates that of the
original variates. If one repeats the randomization process
shown in Fig. 9C, but scrambles 10 pixel blocks rather than
single pixels, the distribution of overlap for the scrambled data
nearly superimposes that of the true random probability distri-
bution (red line). This distribution will provide a more accurate
estimate of the random probability of a measurement, and thus
its statistical significance. Similar results have been obtained in
two-dimensional simulations, demonstrating that small block
sizes yield unrealistically narrow and misleading probability
distributions of MCC (41) and PCC (14, 41).

Although most descriptions of this method indicate that
block size should be adjusted to match the size of the point-
spread function, our simulations indicate that block size should
equal or exceed the size of the objects in an image, whose area
will necessarily be at least as large as that of the point-spread-
function. To test the role of block size, we conducted a
simulation in which MCC was quantified for each of 1,000
trials in which red and green line segments of different sizes (5,
10, or 20 pixels) were randomly arrayed along a 1,000 pixel
line segment. For each random trial, the green pixels from the
resulting line were divided into blocks ranging from 1 to 40
pixels in length, which were then randomly distributed to
generate a scrambled line segment and MCC was calculated
again. Figure 9D shows that the standard deviations obtained
for the scrambled line segments (circles) approach those of the
original line segments (squares) only when the block size
exceeds the size of the original line segments. Since autocor-
relation is always reduced by the process of fragmenting the
original image, the standard deviations of the randomized
block data never quite reach the levels obtained with the
original data.

As described above, the use of the narrow probability
distributions obtained with small block sizes would result in
systematic overestimates of the significance of measured MCC
values. The results of this simulation suggest that to generate a
representative random probability distribution, the size of pixel
blocks chosen for randomization should exceed that of the size
of the objects in the image.

The pixel block scrambling approach for estimating the
random probability of a colocalization measurement has been
implemented in the Slidebook image analysis software package
and the JACoP and WCIF ImageJ plugins, which include the
capability to adjust the block size used in randomization.
Alternative methods for generating “randomized” images have
also been implemented in which an image of randomly distrib-
uted pixels is first generated, based either on a white noise
image (Imaris) or a pixel-scrambled version of one of the test
images (WCIF Colocalization Test ImageJ plugin). This image
is then convolved with a Gaussian filter whose size matches
that of the point-spread function of the imaging system. These
methods will be appropriate for analysis of structures whose

images are similar in size to the point-spread-function. How-
ever, since they fail to reproduce the autocorrelation resulting
from structures larger than the point-spread-function, they will
yield spurious identifications of significant correlations in
many samples.

The problem of spatial autocorrelation can be avoided using
a frame translation approach, in which the random probability
distribution is generated from measurements of colocalization
obtained after shifting one image relative to the other. Since the
random measurements are obtained from measurements of the
unaltered structures, the autocorrelation of the original data is
preserved so that accurate random probability distributions can
be generated. In a study of simulated punctate objects, this
approach was found to yield broader, more accurate random
probability distributions than those obtained after pixel block
scrambling (41).

To generate meaningful values, the frame-translation method
requires that the “random” measurements be obtained from mis-
matched regions that can otherwise be considered equivalent.
Thus the random measurements must be obtained from dis-
placed regions that remain within the region of potential
interaction. So for example, one cannot compare PCC mea-
sured within a cell to a random probability distribution that
includes values measured with frames that extend outside of
the cell. For many studies, this can limit the number of random
scenarios that can be measured, compromising the accuracy of
the random probability distribution. For example, Fay et al.
(19) generated only 75 random scenarios using translations in
x, y, and z. One way to increase the number of random
measurements in a frame-translation method is to apply a
“wrap-around” technique, in which translated regions that
depart the region of interaction (e.g., extending outside the
cell) are populated with pixels from the opposite side of the
region. This approach, which is sometimes applied to spatial
correlation studies in ecology (20), has been implemented in
the SCIAN-Lab CDA ImageJ plugin, permitting measurements
of random PCC and MCC values for even very small image
regions (41). Because this method fragments the original image
at the edges, it will decrease the autocorrelation slightly and
thus increase the probability of a false positive. However, for
images of reasonable size, only a small portion of the image is
fragmented, so this artifact will generally be quite small. P
values derived from this technique may generally be more
accurate than those resulting from the scrambling approach.

Although the frame-translation approach has been widely
applied for spatial correlation studies in other fields, it has
received little attention in biological microscopy. Thus,
whereas it appears to offer promise as a tool for significance
testing in colocalization studies in cell biology, its general
practicality and utility in biological microscopy remain to be
demonstrated.

Both of the randomization approaches are complicated by
the need to identify the region of potential interaction between
the two probes. If, in the process of simulating random probe
distributions, one maps the randomized probe fluorescence to
regions of the cell that are not actually physically accessible to
the probe, one increases the number of simulations with no
overlap between the two probes. A distribution of measure-
ments obtained from such simulations will contain an inordi-
nate number of low colocalization values, resulting is mistaken
estimates of significance. Whereas we have discussed this issue
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with respect to restricting frame translation to the region of the
cell, the problem is equally important to the scrambling ap-
proach, in which one must identify the region in which pixel
blocks should be randomly distributed. Whereas we can restrict
block distribution to the area occupied by the cell, it may not
be the case that all intracellular regions are actually accessible
to the two probes. The nucleus is an obvious example of a
structure that reduces the potential space of interaction of
cytosolic molecules, but what about all of the other unlabeled
intracellular structures that limit the potential space of interac-
tion? To the degree that probes cannot actually distribute
throughout what appears to be a homogeneous isotropic region,
probability distributions generated with either the scrambling
or frame translation approaches will be biased toward low
colocalization measures, leading to systematic overestimates of
significance. Productive use of the randomization approaches
may require that colocalization be measured in the context of
a explicitly defined region, as in some studies of the distribu-
tion of integral membrane proteins in the plasma membrane
(27, 39), or the distribution of nuclear proteins (45).

In summary, whereas the idea of directly estimating the
probability that a given measurement of colocalization could
be obtained by chance is very attractive, it is not simple to
implement in practice. The process of generating randomized
data is complicated by the difficulty of reproducing the auto-
correlation present in the original data and by the difficulty of
identifying the region of potential interaction of the two
probes. Failure to appreciate these factors will generally lead to
systematic overestimation of the significance of colocalization
measurements. These problems may underlie the fact that, in
a survey of applications of this approach, we find an inor-
dinately large number of studies in which the experimen-
tally measured values fall outside the entire range of ran-
domized values, indicating for each the statistically unlikely
random probability of zero. While extreme values are pos-
sible, they should be regarded critically and ideally com-
pared with values obtained for images of probes with
unrelated distributions.

The problem of significance testing of colocalization data
is one with no simple answer at this point. Potential solu-
tions may have been developed in the field of ecology,
where spatial autocorrelation is a major concern (21, 29),
and where methods for testing the significance of correla-
tions between autocorrelated variables have been developed
(12, 17). Applying these methods to image analysis in cell
biology may be fruitful (Dunn and McDonald, unpublished
observations).

Summary

There are a number of different metrics that can be used to
measure colocalization in fluorescence microscope images.
Here we have described Pearson’s Correlation Coefficient,
Pearson’s Correlation Coefficient measured in regions of probe
overlap, Manders Overlap Coefficient, and Manders Colocal-
ization Coefficient, the metrics most widely applied in biolog-
ical microscopy. Additional measures not discussed here in-
clude the Intensity Correlation Quotient (30) and Spearmann’s
Rank Coefficient (nonparametric versions of PCC) (1), as well
as various object-based measures (7, 23, 27, 38, 48). The
process of measuring each of these metrics typically involves

multiple decisions as to the region of interest in the image
and/or the range of intensity values to be analyzed. Thus an
investigator new to quantitative microscopy is presented with a
dizzying range of possible approaches, each providing a range
of outcomes, depending on parameter settings.

All of the colocalization measurements described here are
widely available to biomedical researchers, either as ImageJ
plugins or in commercial image analysis software, sometimes
provided with microscope systems. The different techniques
are invariably simple to apply and frequently arrayed conve-
niently side by side. Ironically, the simplicity with which
different colocalization metrics can be tweaked and com-
pared becomes dangerous, since the algorithms and their
parameters are poorly described. This is a situation that is
ripe for misuse, innocent or otherwise. In the absence of an
understanding of what each metric actually measures, and of
the basis and consequences of the parameter settings, it is
seductively easy to uncritically apply a variety of different
methods using a variety of different parameter settings. The
problem is that when the user is given little or no guidance
as to how to choose the correct assay or how to set
parameter values, it becomes easy to evaluate the legitimacy
of the assay from the results, a practice that is actually
suggested by at least one review. We are reminded of a
colleague who, when asked how one recognizes when dig-
ital image analysis has been properly conducted, responded
“when it gives you the answer you expect.”

The single most important point of this review is that
there are some very powerful and apparently simple ap-
proaches for quantifying colocalization, but none should be
considered to be turn-key methods. Investigators need to
understand the strengths and weaknesses of each metric,
particularly in practical application. Once the researcher has
identified the colocalization measurement that is appropriate
to the biological question and to the nature of the samples,
every step in the image analysis process should be scruti-
nized. Software that provides the ability to visually evaluate
the effects of parameter adjustments is preferable to soft-
ware that simply spits out a final numerical value.

APPENDIX

Appendix of Image Analysis Software Providing Colocalization
Assays

Nearly all of the image analysis methods described here are
incorporated into image analysis software provided with microscope
systems, in stand-alone software designed for cell biologists, and in
ImageJ plugins, some of which are listed below.

Commercially Available Software

Colocalizer Pro: Colocalization Research Software
Image-Pro: Media Cybernetics, Inc.

Imaris: Bitplane Scientific Software AG.
Metamorph: Molecular Devices, Inc.

Slidebook: Intelligent Imaging Innovations, Inc.
Huygens Profession: Scientific Volume Imaging BV.

Volocity: PerkinElmer, Inc.
Axiovision: Carl Zeiss Microimaging, LLC.

ImageJ Plugins

JACoP (Just Another Co-localization
Plug-in) (7): http://rsbweb.nih.gov/ij
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WCIF Colocalization Plugins,
Wright Cell Imaging Facility,

Toronto Western Research Institute: http://www.uhnres.
utoronto.ca/facilities/wcif

CDA (Confined Displacement
Algorithm), Laboratory for Scientific

Image analysis, University of
Chile, (41): http://www.scianlab.cl
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